Posts categorized as Nuclear Proliferation RSS feed for this section

Flight Testing a Centrifuge

On 13 January, Ivanka Barzashka and I gave a briefing at the AAAS on our work regarding Iran’s uranium enrichment capacity.  Joshua Pollack also gave a briefing, which he has described.  Joshua’s analysis is thorough and interesting but I think I would use a different distinction than the “actual” and “nominal” values that he defines.

Pollack shows how the estimates of the capability of Iran’s centrifuge, the IR-1, have declined over time.  That is intriguing but I worry that it makes the calculations that Ivanka and I and others have performed using data reported from International Atomic Energy Agency (IAEA) on-site inspections seem like the next step in a series of similar estimates.  They are not.  There are two very different types of approaches being taken here.  Here I present an analogy that I think might make the differences clear. Continue Reading →

Nuclear Doctrine and Missing the Point.

The government’s much anticipated Nuclear Posture Review, originally scheduled for release in the late fall, then last month, then early February is now due out the first of March.  The report is, no doubt, coalescing into final form and a few recent newspaper articles, in particular articles in Boston Globe and Los Angeles Times, have hinted at what it will contain.

Before discussing the possible content of the review, does yet another release date delay mean anything?  I take the delay of the release as the only good sign that I have seen coming out of the process.  Reading the news, going to meetings where government officials involved in the process give periodic updates, and knowing something of the main players who are actually writing the review, what jumps out most vividly to me is that no one seems to share President Obama’s vision.  And I mean the word vision to have all the implied definition it can carry.  The people in charge may say some of the right words, but I have not yet discerned any sense of the emotional investment that should be part of a vision for transforming the world’s nuclear security environment, of how to make the world different, of how to escape old thinking.  As I understand the president, his vision is truly transformative.  That is why he was awarded the Nobel Peace Prize.  His appointees who are developing the Nuclear Posture Review, at least the ones I know anything about, are incredibly smart and knowledgeable, but they are also careful, cautious, and, I suspect, incrementalists who might understand intellectually what the president is saying but don’t feel it (and, in many cases, fundamentally don’t really agree with it).  A transformative vision not driven by passion will die.  As far as I can see (and, I admit, I am not the least bit connected so perhaps I simply cannot see very far) the only person in the administration working on the review who really feels the president’s vision is the president.  Much of what I hear from appointees in the administration has, to me at least, the feel of “what the president really means is…”   If the cause of the delay is that yet more time is needed to find compromise among centers of power, reform is in trouble because we will see a nuclear posture statement that is what it is today neatened up around the edges.  But if the delay is because the president is not getting the visionary document he demands, delay might be the only hopeful sign we are getting.

Continue Reading →

Response to Critiques Against Fordow Analysis

Our article “A Technical Evaluation of the Fordow Fuel Enrichment Plant” published in the Bulletin of the Atomic Scientists on November 23 and its technical appendix, an Issue Brief, “Calculating the Capacity of Fordow”, published on the FAS website, have sparked quite a discussion among the small community that follows the technical details of Iran’s program, most prominently by Joshua Pollack and friends on armscontrolwonk.com and by David Albright and Paul Brannan at ISIS, who have dedicated two online reports (from November 30 and December 4) to critiquing our work.
Before addressing the arguments and exposing the fallacies in ISIS’s critique directly, we strongly encourage interested parties to read our Issue Brief, in which we have presented our reasoning, calculations, and assumptions in a clear and straight-forward way that we believe anyone with some arithmetic skills and a pocket calculator can follow and reproduce. We published a quick first version of our Issue Brief on 1 December. The 4 December ISIS rebuttal was based on the first Issue Brief. We published an expanded version of the Issue Brief on 7 December.  The second version adds to the first version, but everything in the first brief is also in the second version.  The second version includes additional examples and further details on how we carried out our calculations (as well as cleaning up some formatting, for example, all the tables in the first version were in different formats, the revision at least looks much prettier).  References to equations and page numbers below pertain to the second revision.
In our Bulletin piece, we concluded that Fordow is ill-suited for either a commercial or military program and we speculated that it would make most sense if it were one of several facilities planned. The latter conclusion has been de facto supported by Iran’s recent declaration of 10 additional planned enrichment sites. Although ISIS explicitly states that our assessment of Fordow is unrealistic, the authors are not clear what their broader argument is. They seem to imply that Fordow alone is sufficient for a viable breakout option, which in the context of our Bulletin article would make Iranian intentions clear-cut but would, however, undermine the need for additional facilities.
Albright and Brannan state that we “appear to assume” that Fordow would perform worse than Natanz.  Quite the contrary, we state clearly in our Issue Brief that “We use well- documented, publicly available data from official IAEA reports and one assertion: The best estimate of the near term capacity of the Fordow facility is the most recent capacity of the Nantanz facility, scaled by size.”    In the December 4 ISIS report, this statement is corrected to say we “significantly underestimate the performance of the Natanz facility.”  The basis of their argument is that our calculation of the effective IR-1’s separative capacity of about 0.44 kg-SWU/yr, lower by a factor of three, four, or more than previously published estimates (see Table 1 of the Issue Brief), is not characteristic of and seriously underestimates Iran’s capabilities.  We argue that previous speculations on the separative capacity of the IR-1 simply cannot explain IAEA data on the actual performance of IR-1 cascades at Natanz, which we consider to be the only credible open-source information available.
Argument #1:  Adopting Ad Hoc Values
Expert guesses on the IR-1 separative capacity vary greatly, as illustrated in Table 1 of our Brief.  For example, since 2006 Albright continuously sites values in the 2 to 3 kg-SWU/yr range, which are either not referenced or are attributed to untraceable sources (e.g. “senior IAEA officials”, “former Urenco official”). The lowest value that Albright has cited was in a footnote on his prepared statement for the Foreign Relations Committee in 2006, which is 1.4 kg-SWU/yr, based on calculations of a 164-machine cascade described in an Iranian official’s interview (this number is consistent with Garwin’s estimate using the same data).  Albright characterizes the 1.4 value as “relatively low output” and this number is never used in breakout scenario estimates.  In the same footnote, he calculates a higher capacity of 2.3 kg SWU/yr based on Aqazadeh’s ballpark figures on the performance of the total planned 48,000 centrifuges.  Since then, the most recent and most widely referenced value for the separative power of an IR-1 that ISIS uses in breakout assessments is 2 kg-SWU/yr.  When given the choice between a higher value attributed to unnamed sources and values he calculates himself, Albright consistently chooses the higher values. This is especially misleading when dealing with weapon production scenarios, which evaluate what Iran can currently achieve.
However, in their critique of our Bulletin article, Albright and Brannan adopt significantly lower values for the separative power: 0.6-0.7 kg SWU/yr (which they say is “undoubtedly too low”) and 1.0-1.5 kg-SWU/yr (which they say is “reasonable for new IR-1 centrifuge cascades”).  They do not explain their reasoning for the latter value, except that the upper boundary is close to “Iran’s stated goal.”  Perhaps, the authors are referring to Albright’s 2006 estimate based on the Aqazadeh statement, but now pick the lower value of 1.4 kg-SWU/yr that Albright had calculated but dismissed.  Although Albright and Brannan do not reveal the data or go through the calculations for their former value, they do allude to their method, which we will discuss below.
The authors arrive at the 0.6-0.7 kg-SWU/yr based on “the average output over nine months in 2009.”  We believe that even this “undoubtedly too low” value has been miscalculated. There are two major sources of difference with the FAS 0.44 kg-SWU/yr value: (1) ISIS uses Iranian logbook data, which does not account for the hold up of material while FAS uses independently calibrated data in the IAEA reports, (2) ISIS does not account for the change in the number of machines in the 9 month period cited (we believe ISIS was referring to 31 January to 30 October 2009).  On the other hand, FAS uses the values of independently recorded data (unfortunately, you have to look for them in the footnotes of the IAEA reports) and accounts for the holdup as described in our Issue Brief.  In addition, we look at data since the last IAEA physical inventory in 2008, from 18 November 2008 to 30 October 2009 (the entire period for which calibrated date is available).
Iranian logbook data have been shown to slightly underestimate the amount of feed and more significantly overestimate the product.  Essentially, Iran is putting more uranium in their machines and less enriched product is coming out than their material accounting algorithm shows, which effectively means that separative power calculated with Iranian logbook data is expected to overestimate the actual effective separative power per machine. This is why indendently calibrated data, if IAEA physical inventory data is not available, provides a more realistic estimate.
Albright and Brannan take an average of enriched product as reported by Iranian logbook estimates from February to October 2009 (an overestimated value), then they simply divide by the number of months to obtain a monthly average, also ignoring the fact that the number of machines varies from month to month. ISIS does not consider the amount of feed that has been reported to enter the cascades under the same set of data, but simply adopt 0.4 percent as the concentration of the waste stream. Although that number is indeed present in a footnote in IAEA reports (GOV/2009/35), it is not the overall concentration of the waste, but shows that particles of depleted uranium “down to 0.4% U-235 enrichment” have been measured. The difference between the ISIS lowest estimate and the FAS estimate is not as significant as the fact that Albright and Brannan dismiss the effective capacity of the IR-1 altogether.
Argument #2: Iran operates fewer machines when the IAEA is not looking
The number of centrifuges in the period is not only a difference between ISIS and FAS’s calculations but is also Albright and Brannan’s basis for dismissal of a smaller number altogether.  The “number of centrifuges used in the derivation is from IAEA safeguards reports and exceeds the quantity of those centrifuges that are actually enriching.”  In personal communication with Scott Kemp (as posted on Pollack’s blog), Albright has also speculated that cascades are not being operated continuously.  This makes little sense.  Do the Iranians wait until inspectors arrive to turn on their machines?  (If this is so, then our problem with Iranian enrichment can be solved quite easily:  just stop inspections and Iran will stop enriching altogether.)  Additional reasons given in a recent Albright and Shire analysis published in Arms Control Today include: Iran is keeping cascades in reserve in case of cascade failures or if it decides to “produce higher enriched uranium” or Iranian experts are focusing on getting Fordow running. All of these arguments seem weak. In the November 30 report, ISIS make yet another conjecture –“a significant fraction of these 4,000 machines are likely also not enriching or are broken.”  As far as we can tell, the ultimate basis for this claim is that otherwise ISIS’ higher per machine capacity does not make sense. However, we discuss the one bit of numerical evidence Albright and Brannan provide for their speculations below.
Based on IAEA reports, changes in the number of machines from 7 November 2008 to 2 November 2009 increases by only 10 percent or so; thus, even if we assume the minimum number of machines for each reporting period, instead of taking averages, the SWUs per machine will increase from 0.44 to 0.47, which of course, has a negligible effect on breakout scenarios.  For the ISIS argument to become important, we have to believe that half or more of the machines reported by the IAEA to be operational in fact are not.
Moreover, remember that the basis of our argument is that recent performance at Natanz is the best predictor of near-term performance at Fordow.  ISIS not only rejects our calculation of Natanz performance but rejects our assertion about it being the best predictor of Fordow.  The implication of the ISIS critique is that, while there might be severe problems at Natanz, these will not be repeated at Fordow.  This may or may not be true.  Perhaps the centrifuges at Natanz perform poorly and are very unreliable and Iran has figured out all those problems and will only install 2.0 kg-SWU machines at Fordow (although we have no hard evidence that IR-1s of that capacity exist).  Alternatively, perhaps there are systematic problems with centrifuge production and cascade operation and this is the best the Iranians can do in the near-term.  Our assertion hinges on Iranian improvements being incremental and evolutionary and on not seeing dramatic, revolutionary improvements at Fordow.  If this is not true, then our assertion for Fordow is wrong, but our estimates of Natanz’s capacity would still be correct.
The ISIS paper presents an additional argument to show that per machine capacity was increasing:  daily average enrichment stayed constant at 2.75 kg of low enriched UF6, while the number of centrifuges dropped from 4920 to 3936.  (There is the problem that we will set aside for the moment:  Either the IAEA data are suspect or they are not, but one should not dismiss them in one case and base arguments on them in another.)  We are back to estimating average number of machines per given period. We have three data points: 31 May – 4920 machines operating, 12 August – 4592, and 2 November – 3936.  We agree with ISIS here: From 31 May to 12 August the average daily enrichment is about 2.8 kg UF6 (according to Iranian logbook data, not calibrated measurements) and similarly about 2.8 kg UF6 from August to November.
However, there are several problems with this argument.  First and foremost, it depends on Iranian logbook data, which has been demonstrated to be inaccurate (plus, of course, IAEA inspection data that ISIS tells us is unreliable).  Taking averages for the number of machines operating in each period and a concentration for the product of 3.49% (as the 2008 PIV), we get a slight decrease from 0.51 kg-SWU/yr (18 November 2008 to 31 May 2009) to 0.46 kg-SWU/yr (31 May to 31 July), followed by a jump to 1.0 kg SWU/yr per machine (31 July to 30 October), that is, a sudden doubling, according to Iranian logbook data. However, if we look at the independently calibrated measurements, the increase is only from 0.43 (18 November 2008 to 2 August 2009) to 0.49 kg SWU/yr (2 August to 30 October 2009).  Also, note a negative holdup for August-November 2009; this could mean that the Iranians have started feeding the leaked material back into the cascades and are salvaging some of the lost separative work.  Interestingly, if you look at the feed data, the feed went up slightly (from 30.4 kg UF6 per day to 31.05 kg UF6 per day, based on Iranian logbooks) as the number of machines went down, suggesting that the limiting factor is the amount of feed material.  Finally, we do not know the enrichment concentrations definitively for those short periods.  For example, a shift in enrichment from 3.5% to just 3.8 % would, by itself, account for all of the difference in separative work. Therefore, the ISIS numerical example is not indicative an increased per machine capacity.
We believe the lesson here is that short term logbook data are not reliable.  Over time, an overestimate during one period will balance an underestimate in another and we will get closer to actual values but on short time scales we need to be wary of Iranian self-reporting.  We concede, whenever we are given the choice, we rely on measurements conducted by IAEA on-site inspectors rather than Iranian logbook entries.
Argument #3: Misrepresenting the FAS Calculation
Albright and Brannan have succinctly expressed the basis of their critique: “We were unable to understand the problems in the FAS calculation.”  On this point, we agree wholeheartedly.
Here is their argument according to the second paragraph of their 4 December posting: (1) They use our separative work number of 0.44 kg-SWU/yr to calculate what we would predict to be the output of Natanz;  (2) This number turns out to be about half of what Natanz is actually producing; (3) QED, our separative work number must be wrong.
But part of their input data is that “[t]he authors also assert that the tails assay at Fordow should be 0.25 percent” when we never say any such thing (we do show example calculations using low, that is to say, global industry standard, tails assay).  In fact, we calculate the tails assay at Natanz as 0.46%.  Indeed, in the very next paragraph, they say that “FAS appears to have forced a U-235 mass balance by adjusting the tails assay in Table 2 in their assessment to 0.46 percent as a way to get the masses to match.  But the situation at Natanz is quite complex.”  On this point, we admit we are guilty as charged.  When they say we “forced” the tails assay, what they mean is that we used the mass balance equation.  And if the laws of conservation of mass do not apply in Natanz, then we concede that the situation there is quite complex indeed.  (And, moreover, no calculation that anyone could make would be useful even in theory.)
Albright and Brannan are more specific:  “For example, calculating the mass balance on the uranium 235 (uranium 235 in the feed should equal the uranium 235 in the product and tails) is not possible based on the available information.  This requires assigning values in a formula that are impossible to substantiate.”  Going to equation 5 on p. 8 of the Issue Brief and following the references, the reader can see that all of the values on the right hand side of the equation appear in IAEA reports.  (And presumably as an alternative to “assigning values in a formula that are impossible to substantiate,” we would do better to accept values credited to “senior IAEA officials.”) If one uses our actual tails assay rather than the incorrectly asserted tails assay and the proper number of centrifuges and the difference between Iranian logbook data and actual IAEA measurements, all of the differences disappear.  (As they have to, since we calculated the 0.44 kg-SWU/yr value in the first place based on these same numbers.)
In the end, an important scientific principle has been demonstrated here:  if one takes several variables from one of our examples and several more variables from a separate example and combines them randomly, nonsense results.
Argument #4: ISIS Is Right Because the White House Says So
The most compelling support for the ISIS estimate that “using 3,000 IR-1 centrifuges, and starting with natural uranium, Iran could produce enough weapons-grade uranium for one bomb in roughly one year” that the authors give is that it is similar to the White House September 25 briefing statement that Fordow is capable of producing HEU for one to two bombs a year.  First, this is a classic example of argumentum ad verecundiam – we are not about to accept White House numbers without checking their math.  Moreover, it must be clarified that the US government’s statement is fairly vague and does not give details on this assumed breakout scenario (whether HEU is enriched from LEU or natural uranium and whether a crude or sophisticated weapon is assumed).  What the government said was:
“[..] if you want to use the facility in order to produce a small amount of weapons-grade uranium, enough for a bomb or two a year, it’s the right size.  And our information is that the Iranians began this facility with the intent that it be secret, and therefore giving them an option of producing weapons-grade uranium without the international community knowing about it.”
Let’s focus on paragraphs 6 and 7 from the November 30 ISIS report. In paragraph 8, the authors state that the White House scenario is unlikely to assume a breakout scenario using low-enriched uranium, since such a diversion would be likely discovered because LEU would have to be sneaked out of Natanz, which is under IAEA safeguards. They interpret the White House statement that weapons grade uranium would be enriched “without the international community knowing” means that this scenario would necessarily involve enrichment of natural uranium to HEU levels. But it must be noted that such a scenario would require a secret conversion facility as well, since the conversion plant at Esfahan is also under safeguards.
In paragraph 7, Albright and Brannan critique our assessment for “appearing to assume” that breakout scenarios considered depend on “activities not being discovered”, in apparent contradiction to their assumption in paragraph 6, that emphasized the importance of the clandestine function of Fordow.  ISIS further argue that if Iran was “breaking out,” Fordow would likely sustain military attack better than Natanz.  Our Bulletin argument was this: if Iran’s HEU production was likely to be discovered (such as if a diversion from Natanz were detected), speed is of the essence. They may be better off kicking out inspectors and going full-speed ahead at a facility such as Natanz with a large capacity, rather than proceeding with an option would take a year or more at Fordow.  If Fordow’s capacity was significantly increased or if there were other similar facilities, this judgment may change.
Conclusion
As we have shown ISIS’ critiques of our Bulletin analysis and its underlying technical assessment are completely unsubstantiated. First, their track record of using higher vaguely referenced values and dismissing values based on physical data and their own calculations, just because they are inconsistent with their previous assessments, is troubling. Second, they greatly misportray FAS’ technical argument, which is clearly described in our Issue Brief. Third, Albright and Brannan seem to pick and chose assumptions to suit their argument at hand: on one hand they assert that IAEA data do not provide a good account of what is going on at Natanz to advance one point, but at the same time site these data to support other points.
Overall, it is hard to see the bigger argument that ISIS is making by attacking our premise regarding Natanz’s capacity (and consequently Fordow’s), but not specifically our conclusions on Iranian intentions vis-à-vis Fordow. It seems Albright and Brannan are interested only in defending their use of a higher separative capacity by attempting to undermine our argument. They do not discuss how our Bulletin conclusions would change if their shorter time estimates were correct, but simply dismiss our analysis altogether.
Ultimately, the reason we engage in discussions over these numbers is because we believe that overestimating Iran’s enrichment potential will provide us with a skewed perception of Tehran’s intent and strategic planning. It is indeed important to be able to make a realistic assessment of Iran’s current capacity and future potential. However, this is best done using neither Poisson statistics nor arguments of authority, but a good look at readily available hard data.

by Ivanka Barzashka and Ivan Oelrich

Our article “A Technical Evaluation of the Fordow Fuel Enrichment Plant” published in the Bulletin of the Atomic Scientists on November 23 and its technical appendix, an Issue Brief, “Calculating the Capacity of Fordow”, published on the FAS website, have sparked quite a discussion among the small community that follows the technical details of Iran’s program, most prominently by Joshua Pollack and friends on armscontrolwonk.com (on December 1 and December 6) and by David Albright and Paul Brannan at ISIS, who have dedicated two online reports (from November 30 and December 4) to critiquing our work. Continue Reading →

Calculating the Capacity of Fordow – Updated Issue Brief Posted

Issue Brief: Calculating the Capacity of Fordow

by Ivanka Barzashka

We have posted an updated version of our latest Issue Brief “Calculating the Capacity of Fordow” – the technical appendix to our November 23 article “A Technical Evaluation of the Fordow Fuel Enrichment Plant” published in the Bulletin of the Atomic Scientists.

This is the document summary:

This brief serves as a technical appendix to our November 23 article in the Bulletin of the Atomic Scientists, which premised that Iran’s Fordow enrichment plant is well-sized neither for a commercial nor military program. We concluded that Fordow may be one of several facilities planned. Our estimates of the plant’s capacity are based on current performance of IR-1 centrifuges at Natanz. Underlying our assessment is a calculation of the effective separative capacity per machine of 0.44 kg-SWU/year. This result is based on IAEA data, which we consider as the most credible open-source information on Iran’s nuclear program. Our estimate for the IR-1 performance is significantly lower than values published in the literature, which cannot account for the current performance of Natanz. We argue that, despite Iranian rhetoric, Tehran’s strategic planning for Fordow is based on actual enrichment performance rather than on desired results. Continue Reading →

Figuring Out Fordow

Last week, my ace research assistant, Ivanka Bazashka, and I published in the Bulletin of Atomic Scientists an analysis of Iran’s recently revealed Fordow uranium enrichment facility, lying just north of Qom.  In summary, we concluded that the timing of the construction and announcement of the facility did not prove an Iranian intention to deceive the agency but certainly raises many troubling questions.  The facility is far too small for a commercial enrichment facility, raising additional serious concerns that it might be intended as a covert facility to produce highly enriched uranium (HEU) for weapons.  But we also argued that the facility is actually too small to be of great use to a weapons program.  A quite plausible explanation is that the facility was meant to be one of several covert enrichment facilities and simply the only one to be discovered.  We believe, however, that it is significant that the Iranians assured the agency that they “did not have any other nuclear facilities that were currently under construction or in operation that had not yet been declared to the Agency” because any additional facilities uncovered in the future will be almost impossible to explain innocently. This, however, does not preclude Iran from making a decision to construct new enrichment facilities in the future. Continue Reading →

Change at the United Nations

by: Alicia Godsberg

The First Committee of this year’s 64th United Nations General Assembly (GA) just wrapped up a month of meetings.  The GA breaks up its work into six main committees, and the First Committee deals with disarmament and international security issues.  During the month-long meetings, member states give general statements, debate on such issues as nuclear and conventional weapons, and submit draft resolutions that are then voted on at the end of the session.  Comparing the statements and positions of the U.S. on certain votes from one year to the next can help gauge how an administration relates to the broader international community and multilateralism in general.  Similarly, comparing how other member states talk about the U.S. and its policies can give insight into how likely states may be to support a given administration’s international priorities. Continue Reading →

Iran Owned Part of Eurodif – Document Posted

ES1997

By Ivanka Barzashka

FAS has posted a report on “Enrichment Supply and Technology Outside the United States” by S. A. Levin and S. Blumkin from the Enrichment Department of the Oak Ridge Gaseous Diffusion Plant, operated at the time by Union Carbide. The document, prepared for the U.S. Energy Research and Development Administration, reviews international uranium enrichment capacity and isotope separation technology as of 1977.

Apart from being of historical interest, the report explicitly states that Eurodif, a French-organized multinational enrichment consortium, was in part owned by Iran.

Continue Reading →

Waiting for Answers on Fordo: What IAEA Inspections Will Tell Us

by Ivanka Barzashka and Ivan Oelrich

After a cascade of disclosures and official announcements, followed by a great deal of conjecture from experts and the media, the Fordo enrichment plant, Iran’s newest enrichment facility located in the mountains near Qom, opened its doors on October 25 to International Atomic Energy Agency (IAEA) inspections. The US, France, and Britain accuse Iran of building the facility covertly and “challenging the basic compact at the center of the non-proliferation regime.” Iran claims the accusations are “hypothetical” and “fantasy” and are part of a conspiracy against Iran’s nuclear program. The Agency has an indispensable role of providing an objective technical account of the facility and ultimately determining whether Iran violated its Safeguards Agreement. But how much can we expect to learn from the first visit to the facility and would that provide sufficient information to resolve the accusations made against Iran?

The text under the Iranian flag with the atom symbol says, "Nuclear power is our undeniable right."

The text under the Iranian flag with the atomic symbol says, "Nuclear power is our undeniable right."

Continue Reading →

CTBT Article XIV Conference

by: Alicia Godsberg

This past Thursday and Friday marked the 6th bi-annual Article XIV Conference, the Conference on Facilitating the Entry Into Force of the Comprehensive Nuclear Test Ban Treaty (CTBT).  This year’s conference was held at the United Nations in New York and was met with a measure of cautious optimism – most states voiced their appreciation of President Obama’s pledge to work toward US ratification of the CTBT, while many states recognized the challenges of obtaining all the necessary ratifications for entry into force of the Treaty and mentioned the challenges to the nonproliferation regime stemming from the lack of the Treaty’s entry into force (despite former commitments to do so) and from the DPRK’s 2006 and 2009 nuclear tests.

Entry into force of the CTBT has been on the international agenda for thirteen years. Because the US, China, UK, France, and Russian Federation have all imposed a voluntary moratorium on national nuclear testing, many question the need for entry into force of the CTBT.  Although the Treaty would bring few new tangible benefits, the political impact of entry into force would be tremendous.  As explained below, the vast majority of sates see entry into force of the CTBT as somewhat of a litmus test for the future viability of the nonproliferation regime. Continue Reading →

The Qom Uranium Enrichment Facility – What and How Do We Know?

On Friday, President Obama, President Sarkozy, and Prime Minister Brown revealed  a covert Iranian uranium enrichment facility near Qom. Obama announced that “the size and configuration of this facility is inconsistent with a peaceful nuclear program.” In a briefing , Senior White House Administration Officials clarified that the facility is designed to hold about 3,000 centrifuges. Although, this number is not large enough to “make sense from any commercial standpoint, […] enough for a bomb or two a year, it’s the right size.”
It is too early to independently verify the US statement that Iran is planning on setting up 3,000 centrifuges at Qom. The IAEA has confirmed  that it has received a letter from the Iranian government announcing the facility. The letter affirms that Iran will provide more information as appropriate. Iran claims that it is not bound by the revised Code 3.1 of its Subsidiary Arrangement with the IAEA and, therefore, they need to announce new facilities only 180 days before nuclear material enters the site and material will not be introduced for at least 6 months as of last Monday, when Iran sent the letter to the IAEA. In an interview with CNN’s Larry King Live, President Ahmadinejad explained  that they have informed the agency a year before they were obligated to and Iran’s Atomic Energy head, Ali Akbar Salehi has said  that no nuclear material has entered the facility yet. Iran claims  that no machines have been installed.
However, some press reports  state that the facility is “within a few months of being completed”. The good news here is that Iran has publically announced the facility (although it is unclear whether it decided to do so only because the cat was already out of the bag) and has said  that it would comply fully with the IAEA (although Iran and the IAEA do not agree what those obligations are).
ISIS recently published satellite images of possible locations of the Qom enrichment plant. Unfortunately, as cool as satellite photos are, they only show tunnel entrances in a mountain. We have found many of those around that area, playing around on Google Earth. Moreover, the locations are simply guesses based on information that has been disseminated by the media. We cannot tell much about the number and type of centrifuges that will be installed at Qom from the ISIS satellite imagery. White House Administration Officials have admitted  that “we’ll have to wait for the IAEA to get inside there and to report back.”
3,000 Centrifuges at Qom – How Do We Know?
How could the Administration know that Iran is installing 3,000 machines? One way would be to compare the area of the Qom facility to that of the enrichment plant at Natanz. Centrifuges take a certain amount of floor space and if we knew the average area per cascade, we could approximate how many machines can fit in a given space. As FAS’ Acting President, Ivan Oelrich points out, you can come up with an estimate for the size of the facility based on the amount of rock that the Iranians are throwing out (if they are digging a hole in a mountain, they have to dispose of the material somewhere). Geoffrey Forden has an example  of what such an analysis could look like. He reached the conclusion that the amount of rock is consistent with the Administration’s statement. Unfortunately, this involves a lot of assumptions and as Forden puts it, “doesn’t prove anything”.
You can also tell something about the size of the tunnel if you knew how much explosive was used to blast the hole. We can also consider the power lines that are going inside the facility and estimate the energy consumption that they are meant for. Perhaps the US has someone working on the inside or has intercepted communications saying, “Send 3,000 centrifuges to Qom.” However, there is no way to know that a particular tunnel will be used to house centrifuges until we have more information provided by other sources. The White House admitted that at early stages of construction, such a facility can have multiple uses and this is in partly why they chose to wait until they had enough evidence to make a compelling argument to the IAEA. Still, outsiders cannot independently verify this information.
What Type of Machines?
If we accept the 3,000 number as true, we also have no way of knowing what type of centrifuge Iran will install at Qom. Other than the IR-1 currently operational at Natanz, Iran has been testing 4 other types
of machines: IR-2, IR-2m, IR-3 and IR-4. It is foreseeable that Iran could wait until one of the more advanced machines is ready for mass production and install those instead. Since carbon fiber models are known to have at least twice the separative capacity relative to aluminum alloy ones, newer models are expected to have a much better performance that the current IR-1 setup at Natanz. The type of machine used would greatly change what they can be done with a set up of 3,000 machines.
Iran may be preparing for the set up of one of the newer centrifuge models. After the last IAEA report  on Iran came out in August 2009, there were statements  in the press that Iran was slowing its expansion of uranium enrichment at Natanz. As it turned out, Iran had decreased the number of operational centrifuges but continued to install new machines and run centrifuges in vacuum. Although some speculated that this may mean that Iran is running out of UF6 or centrifuge parts, a slowdown in the rate of set up of new machines may mean that Iran is preparing for a new centrifuge model. If Iran is close to developing a reliable, higher performance machine, it may prove more economic to wait or slow down setting up IR-1s. So, it is definitely possible that by the time Qom is fully piped and electrified, a new type of centrifuge will be ready for installation.
What Can Be Done with 3,000 Machines?
The size of a facility does not determine whether it can or cannot produce weapons-grade, or highly-enriched, uranium (HEU). Both enrichment to a low degree for a nuclear reactor and to a high degree
for a nuclear weapon are done by gas centrifuges, in fact, potentially exactly the same machines.
One way to tell whether a cascade of centrifuges is used for LEU or HEU production is to look at the  configuration of the machines, or how they are piped together. The set up and piping of the cascade will be different if they are enriching natural uranium to low-enriched uranium (LEU) when compared to natural uranium to HEU. However, they always have the option of using a LEU production set up and simply running the material through several times until they get HEU.
Aside from what is possible in theory, certain things make economic sense and others don’t. To enrich enough LEU for an average 1000 MWe reactor, you need 135,600 kg-SWU/yr. If the 3,000 machines are IR-1s with a separative capacity of 0.5 kg SWU/yr, it would take them about 90 years to get one year’s fuel load. This of course makes no sense. However, if they want to get one bomb’s worth of HEU (from natural uranium), they need 6,320 kg SWU/yr and this would take you a little over 4 years. All of these examples can be worked through with FAS’ new and improved uranium enrichment calculator.
The third option is to take LEU from Natanz and enrich it to a bomb’s worth of HEU. This would take about a year, depending on how much material they are willing to waste. So, if they are trying to divert LEU from an existing facility such as the one at Natanz, the numbers add up perfectly (almost too perfectly). However, diversion of nuclear material from the enrichment plant at Natanz or the conversion plant at Isfahan is near impossible to go undetected if the facilities are under IAEA safeguards. Although uranium mines and mills are not under safeguards, so far there is no sign of a clandestine conversion plant in Iran. There is always the option that the Iranians could just kick the inspectors out and have breakout in one year or less.
A Pilot Plant
On the other hand, Iran hasn’t claimed that the centrifuge plant at Qom is an industrial facility, but a “semi-industrial-scale plant ” or a “pilot plant”. If they are planning on testing a handful of new machines (like at the Pilot Fuel Enrichment Plant at Natanz) or having a set up of centrifuges someplace where an Israeli air raid will not have much effect, to retain enrichment capability and rebuild their industry, this may make more sense. They would not need huge amounts of machines to do this. Currently at PFEP, Iran tests its new centrifuge models by running several cascades of 10 or 20 machines at a time.
Recently , Iran proposed to buy 19.75 percent enriched uranium from the US for medical purposes. According to the IAEA, uranium with about 20 percent enrichment is considered HEU, although it is not of weapons-grade. If the US declines the offer (which it most probably will), Iran could use this as an excuse to make its own medical grade material at the new facility.
According to unclassified US document s released by ISIS, although the Qom plant is reportedly located on an Islamic Revolutionary Guard Corps Base, it is managed by the Atomic Energy Agency of Iran.
Conclusion
So, is the “size and configuration” of the plant inconsistent with a peaceful nuclear facility? Not entirely.  While the circumstantial evidence raises suspicions, based on available evidence, we cannot currently prove it is a military facility.   First, we have no way to confirming the Administration’s statement that Iran will set up 3,000 centrifuges at Qom until the IAEA receives and verifies design information of the facility.  Even if the intelligence were correct, Iran could have changed its plans since the existence of the facility became public, especially if no machines have been set up yet. The 3,000 announced centrifuges by the US are definitely not enough for industrial-scale production of LEU for nuclear reactor fuel. This doesn’t automatically mean that the facility was meant for bomb production, especially if there are no machines installed yet. We don’t know how the plant is configured since, again, no machines have been installed. And, again, this will not be known until inspectors are on the ground.
The location of the facility in a protected and heavily disguised location certainly isn’t helping Iran’s peaceful nuclear program claim. Although repeated Israeli threats of an attack may have developed circumstances for Iranian nuclear safety concerns, this does add to Iran’s track record of ambiguous behavior.
Since the technology to enrich uranium to a small degree for nuclear fuel and to a large degree for nuclear bombs is the same, ultimately the question falls on proving Iran’s intent. Senator Feinsten, the Chairman of the Senate Intelligence Committee said  that Iran’s “intention to produce weapons-grade uranium in the Qom facility has not yet been proven.” If Iran is developing a peaceful program, then it should assuage concerns by adopting further transparency measures, like implementing the revised Code 3.1 of the Subsidiary Arrangements and ratifying the Additional Protocol. On the bright side, US intelligence was good enough to be able to detect a covert nuclear facility. And Iran’s letting inspectors in at Qom is good news.

By Ivanka Barzashka

On Friday, President Obama, President Sarkozy, and Prime Minister Brown revealed a covert Iranian uranium enrichment facility near Qom. Obama announced that “the size and configuration of this facility is inconsistent with a peaceful nuclear program.” In a briefing , Senior White House Administration Officials clarified that the facility is designed to hold about 3,000 centrifuges. Although, this number is not large enough to “make sense from any commercial standpoint, […] enough for a bomb or two a year, it’s the right size.”

It is too early to independently verify the US statement that Iran is planning on setting up 3,000 centrifuges at Qom until the IAEA receives and confirms design plans of the facility. Although the circumstantial evidence certainly isn’t helping Iran’s peaceful nuclear energy claim, we cannot definitively conclude that the enrichment plant has a military function. Senator Feinsten, the Chairman of the Senate Intelligence Committee said that Iran’s “intention to produce weapons-grade uranium in the Qom facility has not yet been proven,” although there are strong indications.

Continue Reading →